
Ponzimon Protocol
Security Audit Report

July 18, 2025

Contents

1 Introduction

2 Overall Assessment

3 Vulnerability Summary

4 Appendix

1.1 About Ponzimon Protocol

3.1 Overview

3.3 Vulnerability Details

4.1 About AstraSec

4.3 Contact

1.2 Source Code

3.2 Security Level Reference

4.2 Disclaimer

1.3 Revision History

1 Introduction

Ponzimon is a gamified staking and collecting platform on the Solana
blockchain. Players acquire digital cards with unique attributes, purchase
farms, and stake cards to earn token rewards from a global emissions pool.
They can upgrade farms, open booster packs for random new cards, or
recycle unwanted cards for potential upgrades. The platform uses a
two-step commit-reveal scheme based on slot hashes for randomness and
includes token burns, protocol fees, and referral incentives to sustain its
economy.

1.1 About Ponzimon Protocol

1.2 Source Code

The following source code was reviewed during the audit:

https://github.com/begreatfulforreal/ponzimon-program

Commit: a74e9975e6a77044c4fa766b4604e6671c2867c1

This is the final version representing all fixes implemented for the issues
identified in the audit:

https://github.com/begreatfulforreal/ponzimon-program

Commit: a9bb431d5df5d92a220b8cd6b20c2b8bf52552e1

1.3 Revision History

Version Date Description

v1.0 July 18, 2025 Initial Audit

https://github.com/begreatfulforreal/ponzimon-program/commits/main/
https://github.com/begreatfulforreal/ponzimon-program/commits/main/

2 Overall Assessment

This report has been compiled to identify issues and vulnerabilities within
the Ponzimon protocol. Throughout this audit, we identified a total of 4
issues spanning various severity levels. By employing auxiliary tool
techniques to supplement our thorough manual code review, we have
discovered the following findings.

Severity Count Acknowledged Won’t Do Addressed

Critical – – – –

High – – – –

Medium 2 1 – 1

Low 1 – – 1

Informational – – – –

Undetermined 1 1 – –

Total 4 2 – 2

M-1

3 Vulnerability Summary

3.1 Overview
Click on an issue to jump to it, or scroll down to see them all.

M-2 Potential Risks Associated with Centralization

L-1 Enhanced Sanity Checks in discard_card()

Improper Reward Logic in recycle_cards_settle()

U-1 Possible Manipulated Random Number in recycle_cards_settle()

In web3 smart contract audits, vulnerabilities are typically classified into
different severity levels based on the potential impact they can have on
the security and functionality of the contract. Here are the definitions for
critical-severity, high-severity, medium-severity, and low-severity
vulnerabilities:

Severity Acknowledged

C-X (Critical)

A severe security flaw with immediate and significant negative
consequences. It poses high risks, such as unauthorized access, financial
losses, or complete disruption of functionality. Requires immediate
attention and remediation.

H-X (High)

Significant security issues that can lead to substantial risks. Although not
as severe as critical vulnerabilities, they can still result in unauthorized
access, manipulation of contract state, or financial losses. Prompt
remediation is necessary.

M-X (Medium)
Moderately impactful security weaknesses that require attention and re-
mediation. They may lead to limited unauthorized access, minor financial
losses, or potential disruptions to functionality.

L-X (Low)
Minor security issues with limited impact. While they may not pose
significant risks, it is still recommended to address them to maintain a
robust and secure smart contract.

I-X (Informational) Warnings and things to keep in mind when operating the protocol. No
immediate action required.

U-X (Undetermined)
Identified security flaw requiring further investigation. Severity and impact
need to be determined. Additional assessment and analysis are
necessary.

3.2 Security Level Reference

TARGET CATEGORY IMPACT LIKELIHOOD STATUS

instructions.rs Business Logic Medium Medium Addressed

3.3 Vulnerability Details

3.3.1 [M-1] Improper Reward Logic in recycle_cards_settle()

The recycle_cards_settle() function finalizes a player's card recycling attempt, using
on-chain data to determine if their cards are successfully upgraded or lost. In its current
sequence, the function calls update_pool() to refresh the global reward state and then
immediately synchronizes the player's last_acc_tokens_per_hashpower to this latest
state. This synchronization happens before the player's pending rewards for the elapsed
period are calculated and paid out, resulting in the player's accumulated rewards for that
period being foregone. Moreover, the settle_open_booster() function shares the same
issue.

Remediation Replace the update_pool() function with the settle_and_mint_rewards()
function, which handles the full reward distribution before updating the player's state.

https://github.com/begreatfulforreal/ponzimon-program/commit/b5e45c75662561c820cfad68e3a545b09c10d1d5

TARGET CATEGORY IMPACT LIKELIHOOD STATUS

Multiple Contracts Security Medium Medium Acknowledged

3.3.2 [M-2] Potential Risks Associated with Centralization

The Ponzimon protocol grants significant protocol-wide control to a single privileged
owner account, which is authorized to perform administrative actions. These include
resetting individual user states, enabling or disabling core system functionality, manually
updating pool states, and arbitrarily modifying system parameters. This concentration of
power contradicts the protocol’s decentralized ethos, exposing it to substantial risks. A
compromised or malicious owner could unilaterally alter protocol behavior,
misappropriate funds, or disrupt the sale process, jeopardizing user trust and system
integrity.

Remediation To mitigate centralization risks, consider implementing a multi-signature
wallet or a decentralized governance mechanism to manage critical actions. Additionally,
introduce a time-lock mechanism for sensitive actions to provide users with advance
notice and the opportunity to react to changes. If full decentralization is not feasible,
ensure the owner’s role is transparently documented, and consider transferring
ownership to a secure, community-controlled entity over time to align with
decentralization principles.

Response By Team This issue has been acknowledged by the team.

3.3.3 [L-1] Enhanced Sanity Checks in discard_card()

The discard_card() function allows a player to remove a card from their inventory. A
specific interaction sequence leads to an unintended outcome. A player can first call
recycle_cards_commit(), which records the indices of the cards to be processed. Before
settling this action, the player can call discard_card() to discard a different card. This
discard operation modifies the player's inventory array (line 616), causing the indices of
subsequent cards to shift. When the recycle_cards_settle() transaction is executed, it
operates on the stored indices, which now point to different cards than those initially
selected, resulting in the wrong cards being recycled.

Remediation To ensure the integrity of pending operations, the discard_card() function
could be enhanced by first verifying that the player has no pending operations before
proceeding, thereby preventing state conflicts.

TARGET CATEGORY IMPACT LIKELIHOOD STATUS

instructions.rs Business Logic Low Low Addressed

https://github.com/begreatfulforreal/ponzimon-program/commit/b5e45c75662561c820cfad68e3a545b09c10d1d5

TARGET CATEGORY IMPACT LIKELIHOOD STATUS

instructions.rs Business Logic High Low Acknowledged

3.3.4 [U-1] Possible Manipulated Random Number in recycle_cards_settle()

The recycle_cards_settle() function generates a random outcome for card recycling using
the hash of a future predetermined slot (reveal_slot). The reveal_slot is derived by adding
a fixed delay to the player's commit_slot. While this introduces a time delay, the source of
randomness — the hash of a single, predictable slot — is deterministic. An advanced
participant or validator could potentially influence or predict the outcome by observing the
commit_slot and knowing the hash of the future reveal_slot.

Remediation To address this vulnerability, the system could be adjusted to incorporate
multiple, less predictable on-chain sources, such as combining the reveal_slot hash with
other dynamic values like the current timestamp or leader-produced data, making the
outcome significantly more difficult to anticipate.

Response By Team The team acknowledges this issue but, given the extremely high
cost of manipulating the slot hash, which likely far exceeds the potential benefits, has
decided to accept the risk.

4 Appendix

AstraSec is a blockchain security company that serves to provide high-quality auditing
services for blockchain-based protocols. With a team of blockchain specialists, AstraSec
maintains a strong commitment to excellence and client satisfaction. The audit team
members have extensive audit experience for various famous DeFi projects. AstraSec’s
comprehensive approach and deep blockchain understanding make it a trusted partner
for the clients.

The information provided in this audit report is for reference only and does not constitute
any legal, financial, or investment advice. Any views, suggestions, or conclusions in the
audit report are based on the limited information and conditions obtained during the audit
process and may be subject to unknown risks and uncertainties. While we make every
effort to ensure the accuracy and completeness of the audit report, we are not
responsible for any errors or omissions in the report.
 We recommend users to carefully consider the information in the audit report based on
their own independent judgment and professional advice before making any decisions.
We are not responsible for the consequences of the use of the audit report, including but
not limited to any losses or damages resulting from reliance on the audit report.
 This audit report is for reference only and should not be considered a substitute for
legal documents or contracts.

4.1 About AstraSec

4.2 Disclaimer

4.3 Contact

Phone +86 156 0639 2692

Email contact@astrasec.ai

Twitter https://x.com/AstraSecAI

